Search results for "Interest point detection"
showing 3 items of 3 documents
Adapted processing of catadioptric images using polarization imaging
2009
A non parametric method that defines a pixel neighborhood within catadioptric images is presented in this paper. It is based on an accurate modeling of the mirror shape by using polarization imaging. Unlike the most of current processing methods in the literature, this method is non-parametric and can deal with the deformation of catadioptric images. This paper demonstrates how an appropriate neighborhood can be derived from the polarization parameters by estimation of the degree of polarization and the angle of polarization which in return directly provide an adapted neighborhood of each pixel that can be used to perform image derivation, edge detection, interest point detection and namely…
Detection of rupture lines for active scanning
2007
Corner and junction detection is an important preprocessing step in image registration, data fusion, object recognition, and many other tasks. This work deals with corner and junction detection of characteristic features of the structure resulting from cross-pattern projection. The ultimate aim is to adapt the positions and orientation of the cross-pattern projections to what has been observed. The use of this projected light pattern in the framework of active vision allows us to identify certain points of interest on 3-D objects, to directly acquire a synthesis, which thus permits simplified detection, measurement, recognition, or tracking. We present detection methods for corners and junc…
Central catadioptric image processing with geodesic metric
2011
International audience; Because of the distortions produced by the insertion of a mirror, catadioptric images cannot be processed similarly to classical perspective images. Now, although the equivalence between such images and spherical images is well known, the use of spherical harmonic analysis often leads to image processing methods which are more difficult to implement. In this paper, we propose to define catadioptric image processing from the geodesic metric on the unitary sphere. We show that this definition allows to adapt very simply classical image processing methods. We focus more particularly on image gradient estimation, interest point detection, and matching. More generally, th…